Energized Ca2+ transport by hepatopancreatic basolateral plasma membranes of Homarus americanus.
نویسندگان
چکیده
Ca2+ transport by hepatopancreatic basolateral membrane vesicles of Atlantic lobster (Homarus americanus) occurred by at least two independent processes: (1) an ATP-dependent carrier transport system, and (2) a Na+-gradient-dependent carrier mechanism. The sensitivity of ATP-dependent Ca2+ transport to vanadate indicated that it was probably due to a P-type ATPase. This system exhibited an extremely high apparent affinity for Ca2+ (Kt=65.28+/-14.39 nmol l-1; Jmax=1. 07+/-0.06 pmol microg-1 protein 8 s-1). The Na+-gradient-dependent carrier transport system exhibited the properties of a Ca2+/Na+ antiporter capable of exchanging external Ca2+ with intravesicular Na+ or Li+. Kinetic analysis of the Na+-dependence of the antiport indicated that at least three Na+ were exchanged with each Ca2+ (n=2. 91+/-0.22). When Li+ replaced Na+ in exchange for 45Ca2+, the apparent affinity for Ca2+ influx was not significantly affected (with Na+, Kt=14.57+/-5.02 micromol l-1; with Li+, Kt=20.17+/-6.99 micromol l-1), but the maximal Ca2+ transport velocity was reduced by a factor of three (with Na+, Jmax=2.72+/-0.23 pmol microg-1 protein 8 s-1; with Li+, Jmax=1.03+/-0.10 pmol microg-1 protein 8 s-1). It is concluded that Ca2+ leaves hepatopancreatic epithelial cells across the basolateral membrane by way of a high-affinity, vanadate-sensitive Ca2+-ATPase and by way of a low-affinity Ca2+/Na+ antiporter with an apparent 3:1 exchange stoichiometry. The roles of these transporters in Ca2+ balance during the molt cycle are discussed.
منابع مشابه
Characterization of a basolateral electroneutral Na+/H+ antiporter in Atlantic lobster (Homarus americanus) hepatopancreatic epithelial vesicles
Purified basolateral membrane vesicles (BLMVs) were prepared from Atlantic lobster (Homarus americanus) hepatopancreas using a Percoll density gradient technique. Enrichments of the Na+/K+-ATPase and alkaline phosphatase activities of these vesicles were 15.4- and 1.2-fold, respectively. The presence of amiloride-sensitive Na+/H+ exchange was demonstrated. Contrary to electrogenic 2Na+/1H+ exch...
متن کاملIMMUNOLOCALIZATION OF AN ANTIGEN ASSOCIATED WITH THE INVERTEBRATE ELECTROGENIC 2Na+/1H+ ANTIPORTER
Epithelial plasma membranes from crustacean gut, kidney and gills have been shown recently to display an electrogenic 2Na+/1H+ antiporter that differs considerably in its physiological properties from the vertebrate electroneutral 1Na+/1H+ exchange paradigm. In this study, we describe the histological and cytological localization of an antigen associated with invertebrate electrogenic 2Na+/1H+ ...
متن کاملCa2+ transport processes of lobster hepatopancreatic brush-border membrane vesicles
45Ca2+ uptake by hepatopancreatic brush-border membrane vesicles of Atlantic lobster (Homarus americanus) occurred by a combination of three independent processes: (1) an amiloride-sensitive carrier-mediated transport system; (2) an amiloride-insensitive carrier-mediated transport system; and (3) a verapamil-inhibited channel process responsive to transmembrane potential. Both carrier-mediated ...
متن کاملCopper transport by lobster (Homarus americanus) hepatopancreatic mitochondria.
Mechanisms of copper transport into purified mitochondrial suspensions prepared from the hepatopancreas of the Atlantic lobster Homarus americanus were investigated. Mitochondria were purified by combining methods of differential and Percoll-gradient centrifugation, and copper transport was studied using the copper-sensitive fluorescent dye Phen Green. Copper transport by this mitochondrial pre...
متن کاملCopper transport by lobster hepatopancreatic epithelial cells separated by centrifugal elutriation: measurements with the fluorescent dye Phen Green.
The hepatopancreas of the American lobster (Homarus americanus) possesses four types of epithelial cells arranged along blind-ended tubules. At the distal tips of these tubules, stem cells termed E-cells differentiate into three other cell types, R-cells, F-cells and B-cells, each of which have different absorptive and secretory roles in the biology of the overall organ. This investigation uses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 201 Pt 2 شماره
صفحات -
تاریخ انتشار 1998